Treatment of Cleft Related Speech Disorders

Orofacial Clefting: An Overview

Types of Clefting

- Cleft lip +/- Cleft palate
- Primary vs Secondary
- Unilateral vs Bilateral

Types of Clefting continued

- Cleft palate only
- Submucous cleft palate

Patient Population

- Pierre Robin sequence
- 22q11.2 Deletion Syndrome
- Van der Woude
- Treacher Collins
- Stickler
- Apert, Crouzon, Pfeiffer
- Craniofacial Microsomia
Team Care: An Overview

The Craniofacial Team

- “The principal role of the interdisciplinary team is to provide integrated case management to assure quality and continuity of patient care and longitudinal follow-up.”

- Pediatricians, plastic surgeons, otolaryngologists, social workers, nursing, speech-language pathology, maxillofacial surgery, orthodontists, dentists, genetics...

- “Care should be coordinated by the team but should be provided at the local level whenever possible.”

Parameters for the Evaluation and Treatment of Patients with Cleft Lip/Palate or Other Craniofacial Anomalies. American Cleft Palate-Craniofacial Association. Cleft Palate-Craniofacial Journal 1993; 30 (Suppl 1).

Collaboration is Key

- Always contact the team SLP with questions
- Send note/request notes
- Ask questions!
- You see the patient more than the team!

- Craniofacial: 206-987-2208
- Fax New Appointment Request Form (NARF): 206-985-3121 or 866-985-3121

Timeline of Care

- Primary lip repair & rhinoplasty
- Palatoplasty & PE tubes
- Alveolar bone grafting
- Orthodontics
- Orthognathic surgery

Normal VP Function

- Complete closure of VP port required for pressure consonants: [p, b, t, d, k, g, s, z, f, v, ʃ, ʒ, ʧ, ʤ, θ, ð] (all stops, fricatives, and affricates)
 - Onset of phonation → Nasal or vowel adjacent to nasal

- Variable VP closure for vowels, dependent on phonetic context and vowel type
 - Higher for high vowels, lower for low vowels

- Consistently open for nasal consonants [m, n, ŋ]

Velopharyngeal Dysfunction

There’s more to VPI than meets the eye...
Normal VP function

Velopharyngeal Dysfunction

Velopharyngeal Insufficiency

- Inability to achieve velopharyngeal closure due to structural deficit
- Clefting, tumor resection, post-adenoidectomy, palatopharyngeal disproportion
- Can only be treated by changing the structure
 - Surgery
 - Furlow palatoplasty, sphincter pharyngoplasty, pharyngeal flap, pharyngeal wall augmentation
 - Prosthetics
 - Pharyngeal bulb obturator

Velopharyngeal Incompetence

- Deficit in timing, planning, or execution of velopharyngeal closure due to neuromuscular etiology
- Motor Execution: Dysarthria
- Motor Planning/Programming: Apraxia
- Complex to manage
 - Speech therapy
 - Maximize other speech subsystems
 - Prosthetics
 - Palatal Lift
 - Surgery
 - Pharyngeal flap, sphincter pharyngoplasty
Velopharyngeal Mislearning

- *Learned* patterns that compensate for inability to control airflow at the level of the VP port
- Can co-exist with normal VP function or with VPI
- Treated with speech therapy
 - Does not improve with surgery!
- “Valve” airflow at or posterior to VP port

Differential Diagnosis

Evaluation

- **Resonance**
 - Any change in shape of the vocal tract can impact resonance
 - Hyper vs Hypo-nasality
 - Quick check: Flutter testing

- **Airflow control**
 - VP??
 - Fistula?
 - Mislearning?

- **Articulation**
 - Developmental
 - Obligatory
 - Compensatory Misarticulations
 - “Motor-speechy”
 - Quick check: Nasal occlusion

Types of Evaluation

- **Perceptual Evaluation**
 - Evaluation using your ears and eyes
 - Describe VPD Characteristics
 - Articulation testing
 - Resonance evaluation
 - Determine appropriateness for instrumentation

- **Instrumental Evaluation**
 - Completed after perceptual
 - Nasopharyngoscopy
 - Videofluoroscopy
 - Surgical planning tool

The Importance of Correctly Articulated Speech Sounds for Evaluation of Velopharyngeal Function

- *Sissy sees the sky*
 - Glottal stop replacement of /s/ results in large VP gap
 - Productions with cues from SLP
 - Complete velopharyngeal closure
Speech Therapy for VPD

What to do, when?

- Therapy CAN NOT…
 - eliminate VPI
 - improve hypernasality
 - reduce passive nasal air emission
 - strengthen the palate

- Therapy CAN…
 - Establish repertoire of correctly articulated pressure consonants
 - Eliminate mislearning for better understanding of relative contribution of VPI to overall intelligibility/acceptability
 - *Preserve* articulation until child is developmentally appropriate for instrumental evaluation
 - Be dynamic: Diagnostic therapy!

Goals of Therapy

- Establish airflow direction, pressure build-up, and correct oral placement
- Maximize intra-oral air pressure build-up during speech
- Teach new motor patterns to replace atypical, and compensatory misarticulation errors

General Concepts

- Maintain manner of production while sacrificing place
 - Fricatives remain fricatives, stops remain stops
- Place of articulation generally shifts posteriorly
 - “backed” productions
- Most common errors:
 - Glottal stops & fricatives
 - Pharyngeal stops & fricatives
 - Posterior & anterior nasal fricative

Where do I begin?

- Airflow awareness
- Most visible sounds
- Most anterior sounds
- Most stimulable sounds
- Throw the developmental timeline out the window!
- Explicit teaching
- Call the team SLP!

Principles of Motor Learning

- Give new sounds a new name!
- High number of trials: drill drill drill
- Practice distribution: it takes time
- Variation: sounds in different contexts
- Random schedule: target multiple sounds per session
- Motor learning is task specific: Better speech involves speaking!
 - Sucking
 - Blowing
 - Whistles/flutes
 - Vibrating, massaging, stretching

Lof, Gregory L; Ruscello, Dennis. Don't Blow this Therapy Session! SIG 5 Perspectives on Speech Science and Orofacial Disorders October 2013, Vol.23, 38-48. doi:10.1044/ssod23.2.38

Airflow Control

• NOT non-speech oral motor exercise
• NOT intended to strengthen the palate
• Teaching concept of airflow control
• Visualization of oral airflow
• Quickly shaped into speech sounds

Glottal Stops /ʔ/ & Fricatives /h/

• Place of artic: Glottis
• Glottal stops → oral stops
• Glottal fricatives → oral fricatives
• Can also be co-articulated
 • Don’t just focus on place of artic

Glottal: Therapy Techniques

• Auditory discrimination & Airflow control
 • “coughing place” or “talking place”
 • Diagrams!

• Whispered speech
 • “Feel” for voicing
 • Make it fun-motor

• Shaping
 • /m/ → /b/
 • /n/ → /d/
 • /ng/ → /g/

Making Speech Fun!

• Visualize the airflow
 • Tissues, feathers, pom poms…
 • Tactile and visual cueing

• Shaping from non-speech
 • Puff cheeks then release
 • Use /h/ to facilitate & “catch” air
Pharyngeal Stops, Fricatives & Affricates

- Place of artic: Base of tongue to posterior pharyngeal wall
- Voiced or voiceless
- Stops: stops \[\text{I, ɾ}\]
- Fricatives: fricatives [s, ʃ]
- Affricates: affricates [ʢ, ʡ]

Pharyngeal: Therapy Techniques

- Auditory discrimination & Airflow control
 - "coughing place" or "talking place"
 - Diagrams!
- Move the tongue anterior
 - "Think" /t, d/ while holding tongue down with tongue depressor
 - Use /θ/ to shape /s, sh/
- Shaping
 - Nasal occlusion with /ŋ/’
 - Start with velar fricative then “stop”

VP Mislearning: Nasal Fricatives

- Place of artic: VP port
 - /s, z, ʃ/
 - Co-occur with VPI or normal mechanism
 - If phoneme-specific, resonance and all other pressure consonants WNL
 - Can be co-articulated: focus on air!
 - Do not respond to surgery

Nasal: Therapy Techniques

- Auditory discrimination & Airflow control
 - "Nose air" vs “mouth air”
 - Diagrams!
- Biofeedback
 - See-scape
 - Oral-nasal listener
- Nasal occlusion
 - Inhibits active nasal air emission
 - Gradually fade
- Shaping
 - “Long T” method
- Visual and Tactile Cues
 - Feel your air!
 - Catch your air!
- Stage the approach
 - Oral->nasal
 - Dentalized, lateralized…take it
 - Fine tune placement later
Goal Writing

- **Long term goal:** Frank will eliminate use of compensatory-misarticulation patterns and develop correct oral articulatory placement with orally directed airflow.
- **Short term goal:** Frank will use the bilabial place of articulation and orally directed airflow when producing /b, p/ in consonant-vowel (CV), VC, and CVC word shapes with 100% accuracy in each of two consecutive sessions. Visual, verbal, and tactile cues will be used as needed.
- X Frank will decrease hypernasality of vowels in 80% of opportunities.

Case Study

Putting it all together

The Power of Speech Therapy

Other Helpful Resources

- American Speech and Hearing Association
 - www.ASHA.org
 - Yearly conference, publications, online resources
- ASHA Special Interest Group 5
 - Craniofacial and Velopharyngeal Disorders
 - Access to publications, webinars, chats, and a very active list-serve
- American Cleft Palate-Craniofacial Association
 - www.acpa-cpf.org
 - Yearly conference, publications, online resources, list-serve
- The Clinician’s Guide to Treating Cleft Palate Speech (2016)
 - Peterson-Falzone, Trost-Cardamone, Karnell, Hardin-Jones

References

Lof, Gregory L; Ruscello, Dennis. Don’t Blow this Therapy Session! SIG 5 Perspectives on Speech Science and Orofacial Disorders October 2013, Vol.23, 38-48. doi:10.1044/ssod23.2.38

Thank you!

Kaylee.Paulsgrove@seattlechildrens.org
206-987-0849

Questions?